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Flush-mounted hot-film gauges have proved very effective in measuring skin friction 
in steady laminar and turbulent boundary-layer flows. Their use is based on the 
analogy between momentum and heat transfer in the boundary layer. An extension 
of this technique for use with unsteady flows is presented, through the formulation 
of a more general relationship between the rates of heat and momentum transfer at  
the wall. The accuracy of the new formula and the range of its applicability are 
examined for the case of a periodic boundary layer, both in the laminar and turbulent 
regimes. This is accomplished by comparing the formula against exact numerical 
solutions of the differential equations. The present extension allows one to apply the 
hot-film technique to general unsteady-flow situations, including the measurement 
of the spectral density of wall-shear-stress fluctuations in steady turbulent flows. 

1. Introduction 
The technique of measuring wall shear stress in boundary-layer flows using 

flush-mounted hot-film gauges has been well established, to the point that these 
gauges are now available commercially. The gauge consists of a thin metallic film 
baked onto a non-conducting substrate (figure 1). The film forms one arm of a 
constant-temperature anemometer bridge. An electric current is passed through the 
film by a high-gain feedback amplifier so as to maintain it at a constant temperature, 
higher than the ambient fluid temperature, while heat is continuously being 
transferred from the film to the fluid. If the flow is steady and laminar, and the 
longitudinal pressure gradient negligible, the resulting heat-transfer rate QT to the 
fluid can be shown to be related to the wall shear stress 7, as 

7, cc Q1. 
The technique can also be applied to determine the time-mean wall shear stress in 
turbulent flows, provided the thermal boundary layer generated by the heated film 
is completely submerged within the viscous sublayer of the turbulent boundary layer. 
It has been utilized by, among others, Ludwieg (1950), Liepmann & Skinner (1954), 
Myers, Schauer & Eustis (1963), and Bellhouse & Schultz (1966). 

Measurements of the periodic wall shear stress in pulsatile turbulent pipe flow using 
Current address: Department of Mechanical Engineering, Washington State University, 

Pullman, Washington 99164-2920. 
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FIQURE 1.  Schematic sketch of the hot-film and the bridge circuit. ( a )  Hot-film construction: F. 
film; S, substrate; W ,  wall; arrow indicates the direction of flow, 1 and u< indicate the length and 
width of the film. (a) Anemometer bridge circuit: R, operating resistance of the film: R, fixed 
resistance; FA, high-gain feedback amplifier; E,  bridge output voltage. 

a hot-film gauge were reported by Tu & Ramaprian (1983). However. the simple 
relation between wall shear stress and heat-transfer rate given by (1) may break down 
in unsteady flows, as first noticed by Bellhouse & Schultz (1966). In  the particularly 
important case of oscillatory flows, breakdown can be expected to occur at  ‘high‘ 
frequencies of oscillation. Pedley (1 972) presented an analysis, based on asymptot ic 
techniques, to determine the unsteady response of wall heat transfer in oscillatory 
laminar flow. This is useful in establishing the conditions under which significant 
departures from a quasi-stcady behaviour occur, leading to the breakdown of (1). An 
extension of this work (l’edley 1976) deals with reverse-flow situations. Kaiping 
(1983) avoided some of Pedley’s simplifying assumptions by resorting to numerical 
techniques. He presented graphs from which departures from a quasi-steady response 
can be quantified for given amplitudes and frequencies of oscillation. Thew studies. 
however, do not deal with the problem of generalising ( 1  ) to include unsteady flows. 
An attempt in this direction was made by Bellhouse & Schultz (1966). Their interest 
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was in the estimation of the frequency spectrum of wall-shear-stress fluctuations from 
measurements of the instantaneous rate of wall-heat transfer. Hence, they obtained 
experimentally the actual relationship between the amplitude of oscillation of the wall 
shear stress and that of the heat-transfer rate, as a function of the frequency, from 
a calibration experiment in the periodic laminar boundary layer on a longitudinally 
oscillating flat plate. The amplitude of oscillation of the wall shear stress can be 
calculated analytically in this case. However, because of practical limitations, these 
calibration experiments could not be extended to higher frequencies. It therefore 
became necessary for them to extrapolate the results from the lower-frequency cali- 
bration experiments in order to estimate the higher-frequency end of the spectrum 
of wall-shear-stress fluctuations. They did not develop an appropriate theory for un- 
steady flows, however. 

I n  this paper, a theory is presented for the measurement of skin friction in unsteady 
flows, using hot-film gauges. This theory has lead to a formula more general than (1) .  
The accuracy of the new formula is demonstrated for the case of laminar and 
turbulent boundary-layer flows subjected to  a periodic free-stream velocity U, of the 
form 

UJt) = Uo(l + E  sinwt). (2) 

where w is the angular frequency of oscillation, Uo the time-mean velocity and E the 
relative amplitude of oscillation. This is accomplished by comparing the instantaneous 
(ensemble-averaged) wall shear stress obtained from the new formula against exact 
numerical solutions of the governing partial differential equations. I n  addition, the 
failure of (1)  a t  relatively high frequencies is also shown. The proposed formula is 
thus expected to  widen the range of application of the hot-film gauge to  include many 
unsteady-flow situations. 

2. Development of a general formula 
The problem under study is shown schematically in figure 2. A thermal boundary 

layer develops within a laminar or turbulent hydrodynamic boundary layer over the 
heated film of (effective) length L in the streamwise direction. The thermal boundary 
layer is produced by a sudden jump in the surface temperature, from a constant value 
equal to the ambient temperature 1: to the higher constant value To, at the location 
x = xo. In  the case of a turbulent boundary layer i t  is assumed that the thermal 
boundary layer is completely submerged within the viscous sublayer, so that any 
effect of turbulent diffusion can be neglected. We then seek a relationship between 
the local skin friction T, and heat-transfer rate Q, from the fluid t>o the wall. We shall 
follow a procedure similar to the one outlined by Bellhouse & Schultz (1966), 
conveniently generalized to  deal with unsteady-flow situations. The equation govern- 
ing the temperature distribution T is 

aT aT aT k a2T - + U - + V - - = - -  
at ax ay a y 2  

(3) 

where r is the time, U and V are the velocity components along the x and y axes 
respectively, and p, k and cp are the mass density, thermal conductivity and specific 
heat of the fluid, respectively. In  (3) we have neglected viscous dissipation, and 
considered the flow to be two-dimensional. For the sake of clarity the theory will first 
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be developed for laminar flow. It can easily be extended to turbulent flows later. Using 

au a v  
ax ay 

the continuity equation, 
-+- = 0, 

(3) can be rewritten as 
aT a a k a2T 
-+-(UT)+-(VT) =-T. 
at ax a Y  PCp a Y  

(5)  

Integrating (4) across the thermal boundary layer up to a point y = ye, which is 
beyond the edge of this layer, we obtain 

Udy+ Ve = 0, & JoVe 
where Ve is the velocity at y = ye. Noting further that  T = Te at y = ye, we obtain 
from (5)  

(7) 
a Ye 1 

Tdy+G Jo UTdy+ V, Te = -- &, . a *e 

PCP 

Combining (6) and (7) we get 

a ye a ye 1 
%J0 (T-Te)dy+-J U(T-T,)dy=--Q&,. 

ax 0 PCP 

Now we shall introduce a key assumption regarding the velocity profile. Considering 
that, in the region where the thermal boundary layer exists, inertia effects can be 
ignored, the velocity profile can be approximated by 

u = - y + -  7, 1 ("") - y ,  2 
Y 2Y ax 

(9) 

where p is the pressure and p is the viscosity of the fluid. The implications of this 
hypothesis (one of the classical hypothesis in the theory for hot-film gauges) will be 
discussed later. For the time being i t  sufficies to  say that the restrictions for this 
assumption to apply are met in most practical applications. Introducing (9) into (8) 
we obtain 
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We now assume that temperature distributions in the thermal boundary layer are 
self-similar at  any instant of time. Thus, one can write 

where 

and 8, is the local thermal-boundary-layer thickness. Note that, as a consequence, 
the ‘ shape parameter ’ 

A(t )  = (13) 

must be a constant for the flow, for each instant of time. In addition, we define three 
more ‘shape parameters ’, namely 

where the integration can be truncated a t  E = 1 since it is assumed that T N T, for 
y > 8,. Introducing (11)-(16) into (10) we obtain 

f (17) 
a cpk(T,-Te)2 a ak2(Tw-Te)arw - bka(T,-Te)4 

--[ at Q,  I+&[ Q& 2Qk 

The last step consists of integrating (17)  along the surface from some point x = sl, 
such that x1 < xo, to x = so+ L (see figure 2 ) .  We then obtain 

where ATo = To - T,, and the subscript L refers to values at x = xo + L. In the above 
integration we have assumed that A,  defined in (13), remains finite even for Tw + T,. 
This makes the contributions from x = z1 to x = xo to vanish. To evaluate the 
remaining integrals in (18) we shall further assume an expression for ST of the form 

where n is an unknown exponent and can, in general, depend on time. Equation (19) 
is a relatively weak hypothesis. Moreover, a relation like this, with n = f, holds 
approximately for steady laminar flow when L 4 xo (see Kays & Crawford 1980). 
Using (13) and (19) we can obtain, after some algebra, the following results (see 
Menendez & Ramaprian 1984 b) : 

C 
TwL = - 
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For steady flow a/at = 0, (20) reduces to that presented by Bellhouse & Schultz (1966), 
except for the corrective factor l / ( l - n ) .  Finally, assuming that c and n are 
independent of time, and considering the particular free-stream-velocity distribution 
given by (2 ) ,  which means that 

@ L  = -@+) = -p€OUo coswt, 
L 

(20) can be rewritten in the following simplified form 

where 

bk(ATo) apmU,, 
2a 

A,  G , 

PLC A =  - (1 + n) ak(ATo) * 

Equation (22) has been developed for laminar flows. It can also be regarded as the 
relationship between the instantaneous values of wall shear stress and wall heat flux 
in turbulent flows. Taking the ensemble averages of (22) over a large number of cycles, 
one then gets 

(26) 
a 

(7,) = -Al (QtL)+A2({&})  c o s w t + A 3 -  at ( Q w L ) -  

If the turbulent fluctuations in (7,) and ( Q w L )  are assumed to be ‘small’ compared 
with their ensemble averaged values, (26) can be linearized to  yield 

The shape parameters a, b and c and the shape exponent n can, in general, be 
functions of time in unsteady flow. However, finite-difference solutions of the 
governing equations (to be discussed in $ 3 )  indicated that a ,  b,  c and n, in general, 
vary insignificantly during a cycle in the periodic boundary layer. For most operating 
conditions it was found to  be adequate to treat them as ‘universal’ constants and 
use the following average values for steady as well as unsteady flows. 

a = 0.23, b = 0.14, c = 0.56 

n = 0.29 for laminar flows, 

n = 0.25 for turbulent flows. 

While the above values were obtained for L/x ,  z 0 (which is typical of heat-flux-gauge 
operation) careful study indicates that these values vary only slightly in the range 
0 5 L/xo  5 1 (see Menendez & Ramaprian 19843). 

Equation ( 2 2 )  is the fundamental formula being proposed for obtaining skin 
friction from the wall heat-transfer rate. A version of the formula more convenient 
to use in practice is presented in $5.  In the particular case of steady flow (in zero 
pressure gradient) ( 2 2 )  reduces to 
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which is the classical formula proposed for hot-film measurements. Equation (22) is 
verified in the following section for the case Llx  4 1,  which corresponds to  the 
measurement of wall shear stress using a hot-film gauge. The acceptability of the 
assumptions leading to (22) and the restrictions imposed by them are examined in 
the appendix. 

3. Verification of the formula 
3.1. Method of calculation 

To test the accuracy of (22), a finite-difference procedure was used to  calculate the 
wall shear stress and wall heat-transfer rate in a periodic boundary layer with a 
free-stream-velocity variation described by (2). First, the hydrodynamic equations 
for the boundary layer (continuity and momentum) were solved. This provided the 
cyclical variation of the wall shear stress T,, and the distributions of U and V which 
drive the unsteady thermal boundary layer. Next, the unsteady (laminar) thermal- 
boundary-layer equation was solved, from which the cyclical variations of the wall 
heat transfer rate Q, was obtained. 

The ensemble-averaged hydrodynamic-boundary-layer equations for an  incom- 
pressible, two-dimensional, unsteady, turbulent flow are : 

where u is the kinematic viscosity of the fluid. The last term on the right-hand side 
of (31) represents turbulent diffusion; u and v are the turbulent fluctuations of U and 
V ,  respectively, and - (uv) is the ensemble-averaged Reynolds shear stress, which 
needs to be modelled in order for the system of equations to be closed. Equations 
(30) and (31) were solved using a finite-difference method, details of which are 
described in Menendez & Ramaprian (1982, 1 9 8 4 ~ ) .  In  this method, the equations 
are solved in primitive variables ( U )  and ( V ) .  The x-coordinate is non-dimensiona- 
lized as 

O X  2,- 
UO ’ 

which can be interpreted as a frequency parameter that  measures the importance of 
unsteadiness relative to  convection. The y-coordinate is normalized using a lengthscale 
representative of the hydrodynamic-boundary-layer thickness. Two important 
features of this calculation procedure are that i t  retains numerical accuracy even a t  
very high frequencies and i t  can handle reversals of flow (not flow separation) during 
the oscillation cycle. 

The thermal-boundary-layer equation (3) was solved next. The same numerical 
procedure was used as that employed to solve the hydrodynamic equations. I n  this 
case the x-coordinate was non-dimensionalized as 

where U ,  (a constant) is the scale for the longitudinal velocity within the thermal 
layer. Note that P can also be interpreted as a second frequency parameter, measuring 
the importance of unsteadiness relative to  convection in the thermal boundary layer. 
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a0 6 

0.01 0.50 

0.1 0.50 
0.5 0.50 
1.0 0.50 

0.30 
2.0 0.50 

0.25 
5.0 0.50 

0.15 
10.0 0.10 

E Case 

0.0005 L1A 
0.01 L1B 
0.05 L2 
0.10 L3 
0.05 L4A 
0.10 L4B 
0.10 L5A 
0.10 L5B 
0.30 LBA 
0.10 L6B 
0.10 L7 

TABLE 1. Selected values of go, B and E for unsteady-laminar-flow cases 

The restriction L < zo was explicitly used by assuming that the calculated velocity 
profiles for (U) and ( V )  were invariant with 2 along the hot film. More details on 
the calculation procedure for the thermal boundary layer equation are presented in 
Menendez & Ramaprian (19848). 

Calculations were made for laminar as well as turbulent flows. In the laminar-flow 
calculations (uv)  was set equal to zero. In  the turbulent-flow calculations a 
one-equation model, the so called Prandtl energy model (see Acharya & Reynolds 
1975; Menendez & Ramaprian 1982), was used to describe (uw). It is possible that 
the calculated velocity field may be somewhat sensitive to the specific turbulence 
model used. However, since our interest is to study the relation between wall shear 
stress and wall heat-transfer rate, and since the temperature distribution is driven 
by the calculated velocity distribution, it is necessary for the velocity distribution 
to be only representative of the actual velocity distribution. The thermal-boundary- 
layer calculations are exact since they do not involve any turbulence modelling. 

By appropriately rewriting (22) it can be shown that the relationship between 
wall shear stress and wall heat flux depends on the frequency parameter 2,, 
the non-dimensional effective film length = wL/U*,  the relative amplitude E ,  the 
mean-flow Reynolds number (U ,  x , / v )  and the Prandtl number Pr of the fluid. The 
calculations were made for a Prandtl number of 7, being the value for water at  a 
temperature of 20 "C. The calculations were repeated for several combinations of 
values of x,, E and z. It is important to realize that these cannot be chosen arbitrarily, 
if the restrictions leading to (22) are to be satisfied. These restrictions are discussed 
in the Appendix. It can be mentioned here however that, for the selected values of 
xo and E ,  the largest permissible values of E were taken in order to obtain maximum 
effects of unsteadiness. Both laminar and turbulent flows were considered. Turbulent- 
flow calculations were performed for a typical mean-flow Reynolds number of 2 x lo6. 
In the case of laminar flows the solutions were made independent of Reynolds number 
by appropriately stretching the coordinates. The results for laminar and turbulent 
flows are separately discussed below. 

3.2.  Results for laminar flow 
Several unsteady-laminar-flow calculations were performed. These varied from very 
low (2, < 1)  to very high frequencies (x, 9 1). Table 1 shows the selected values of 
the parameters go, E and 2 for the different cases. The velocity scale U ,  was chosen 
as 0.291U0, which roughly corresponds to a velocity value at the outer edge of the 
thermal boundary layer for the cases studied. The results of the calculation are 
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FIGURE 3. Variation of the wall shear stress during the oscillation cycle for laminar flow : (a) case 
L1A; ( b )  L3; (c) L4B; ( d )  L5B; (e) L6B; ( f )  L7; (9) L1B; (h) L2; (i) L4A; (j) L5A; (k) L6A; -, 
exact solution, 0, conventional method; A, present method. 

presented in figure 3 in a Reynolds-number-independent form using the following 
dimensionless coordinates : 

c =  ot. 

This figure shows the variation of the wall shear stress during the oscillation cycle. 
Results obtained from three different methods are compared. These methods are : 

( i )  directly from the hydrodynamic solution (i.e. from the velocity profile), which 
we shall refer to as the ‘exact’ solution; 
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(ii) from the use of (29), in which (the exact) QwL is obtained from the numerical 
solution of the thermal-boundary-layer equation. We shall refer to this as the 
‘conventional ’ method; 

(iii) from the same procedure as (ii), except that the modified relationship (22) is 
used in place of the conventional relationship (29). We shall refer to this as the 
‘present ’ method. 

Figure 3 (a) shows the results for case L1 A. Not much difference is observed between 
the different calculations in this case. Actually, they agree within the range of 
numerical errors. This was to be expected a t  the very low value of the frequency 
parameter E for this flow. 

The wall shear stress for case L3 is presented next, in figure 3(b). This time, it is 
readily observed how the present method gives much better results than the 
conventional approach. In fact, the results for Fw from the conventional method must 
be considered poor : its amplitude is too small and it lags behind the exact solution. 
This clearly illustrates the necessity of using the present method when 2 is not very 
small. Similar results are obtained for cases L4B, L5B, L6B, and L7, as illustrated 
by figure 3 ( c ) - ( f )  respectively. Note that, for these runs, the selected values of E (table 
1) are smaller for larger xo. This was done in order to avoid the occurrence of flow 
reversal (see below). 

The results for cases L1B and L2 are shown in figure 3(g) and (h) ,  respectively. For 
these cases both the conventional and present results give poor agreement with the 
exact solution. The problem here seems to be associated with the fact that e is of 
the order of xo (see table l) ,  violating one of the assumptions of the numerical 
procedure. Obviously, this case is not of interest in hot-film applications. 

Cases L4A, L5A and L6A were selected in order to study the consequences of the 
occurrence of flow reversal during part of the cycle. Figure 3 ( i ) - (k )  show the results 
obtained. It is observed that the conventional method gives results which are not 
even qualitatively correct over a significant part of the cycle. This it to be expected 
since wall heat flux does not reverse in direction even when the wall shear stress 
reverses. Hence the conventional method cannot give negative values of wall shear 
stress. In  fact the analogy between heat and momentum transfer at  the wall breaks 
down over a substantial part of the oscillation cycle. The present method is seen to 
perform much better in capturing the behaviour of the true wall shear stress. Even 
this method fails to describe correctly the variation in wall shear stress during flow 
reversal. However, during the remaining part of the cycle the present calculation still 
gives satisfactory results, except when the backflow is quite severe, as in figure 3 ( k ) .  
It should be noted that cases L5A and L6A are extremely severe test cases and are 
unlikely to be encountered in practical situations involving the use of the hot-film 
gauge. 

3.3. Results for turbulent $ow 
Calculations for turbulent flow were performed for a wide range of frequencies. The 
frequency regime was characterized according to the following criterion (Menendez 
& Ramaprian 1983): 

go 5 1 : 
1 4 a, 5 @ : 

@ 4 a. 4 R, : 

low-frequency regime; 

intermediate-frequency regime ; 

high-frequency regime; 

R, 6 X o :  very-high-frequency regime; 
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2 0  & 1 Case 
0.01 0.50 10-6 T1 
1 .o 0.50 10-3 T2 
10.0 0.40 0.01 T3 
35.0 0.30 0.05 T4 
350 0.10 0.50 T5 
1350 0.05 0.10 T6 

TABLE 2. Selected values of a,, e and E for unsteady-turbulent-flow cases 

0.006 

0.007 0.005 

0 006 0.004 

0.005 0.006 

0.004 0.005 

0.005 

0.004 

0.005 

0.004 

0.003 

0.002 

0.001 

Cf 

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 

i 1 

FIGURE 4. Variation of the skin friction coefficient during the oscillation cycle for turbulent 
flow: (a )  Case T1; ( b )  T2; (c) T3; ( d )  T4; (e) T5; ( f )  T6; Symbols as in figure 3. 

where R, = ii, 8 / v ;  ii, is the mean shear velocity and 8 the mean hydrodynamic- 
boundary-layer thickness. Table 2 presents the selected values of 3,, E and L'. In all 
cases E was taken as large as possible, but small enough to avoid flow reversal. 

Figure 4 presents the results for the skin-friction coefficient Cf = 27,/pq for the 
various test cases. Referring to figure 4(a), which shows the results for case T1, it 
is seen that there is good agreement between the exact values of (Cf) and those 
obtained from the conventional and present methods (which are nearly identical to 
each other owing to the small value of E ) .  The results for cases T2 and T3 are similar 
to the previous ones, as shown in figures 4 ( b )  and ( c ) .  The difference between the 
conventional and present methods, however, is more noticeable for case T3. 

The value of z is sufficiently large in case T4 for the effect of unsteadiness to become 
important. Figure 4 ( d )  shows how the present method leads to a better estimation 
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of the phase of (C,) than the conventional method. A Fourier analysis of the results 
shows that the first harmonic of (C,) (which is, in fact, the most significant) obtained 
from the conventional method lags the exact solution by 9.21', while the present 
method estimates the phase within 0.87' of the exact solution. Case T5, shown in 
figure 4 ( e ) ,  must be considered a rather extreme situation, unlikely to be encountered 
in hot-film usage, since is chosen to  be unrealistically large. It is seen that the 
present method still represents a dramatic improvement over the conventional 
method, even in this 'extreme case. The amplitude of oscillation estimated by the 
present method is 8 yo lower than the exact solution, while the conventional method 
gives the amplitude 35 Yo too low. More dramatic is the improvement in the estimation 
of the phase. The present method reduces the error from -60.36' to  -9.55'. Less 
extreme is case T6 for which results are shown in figure 4 ( f ) .  It is seen that the 
present method gives a very good prediction of both the amplitude and phase lag. 

4. Practical considerations 
A few more steps must now be taken to cast (22) into a form that is convenient 

for use in practice. Let us consider the more practical example of turbulent flows. 
Also, let us first examine the case of small fluctuations. To begin with, one should 
note that it is the total heat transfer (QT) from the entire element to the fluid that 
is measured, and not the local heat transfer (Q,) .  They are related through the 
equation 

(&T) ( t )  = - WJ::L (&w> (5, t ,  d6. (35) 

Introducing the assumptions (13) and (19), the right-hand side can be integrated to  
vield 

where W is the effective width of the film. Furthermore, (QT) is related to the voltage 
E read from the anemometer as (see figure 1 )  

where R ,  is the fixed bridge resistance (=  50 Q in DISA M01 anemometer), R is the 
operating film resistance, and (Q,) is the heat lost to the substrate. Then, in the case 
of steadyjow with zero or negligible pressure gradient, (22) can be rewritten, using (36) 

Two problems arise with the use of (38) (Hanratty & Campbell 1980). First, (Q,) is 
not known. Secondly, the effective area of the element can, in general, be greater than 
the actual film surface area, as some heat may be transferred to the fluid from the 
substrate. Hence, L and W are also not known. The common practice, however, is 
to assume that 

(7,); = A ( E ) ' + B ,  (39) 

where A and B are constants that  can be obtained from calibration in steady flow 
a t  different free-stream velocities. This procedure has been found to be satisfactory 
for the use of the film probe in steady flows with negligible pressure gradient, a t  least 
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over limited but useful range of Reynolds numbers. The fact that  the calibration 
relation (39) is well supported by experiments in steady flow suggests that  it is 
reasonable to assume that for a given probe, operated a t  a given value of AT, the 
effective length L,  effective width W and heat loss Q, are independent of E and hence 
of the free-stream velocity. Being guided by this evidence, we next make the 
somewhat drastic assumption that these are constant in unsteady flows as well and 
have the same values as in steady flow. However, in unsteady flow i t  is still necessary 
to account for the two extra terms in (22). The best way is perhaps, to rewrite (22) 
as 

The best way of obtaining the additional constants c1 and c2 is to  calibrate the probe 
in pulsatile laminar flow, a procedure similar to that employed by Bellhouse & Schultz 
(1966) (but now backed by a consistent theory). This procedure, however, is not 
generally practicable. Therefore, an alternative procedure is proposed below. 

Combining (38) and (39), we can obtain the following relations: 

(1 - N 2 P  R 
A = [  ]" 

apc, k2L2 WAT,(R + R,)2 ' 

Equation (42) can be used to calculate ( Q , )  once the constants A and B are known 
from steady-flow calibration. But (41) has two unknowns: L and W .  To obtain the 
extra relationship between L and W a rather complicated three-dimensional heat- 
transfer problem should be solved. Instead, it will simply be assumed that 

L W  
1 w  
-=- -  = A , ,  (43) 

where 1 and w are the actual length and width of the film, respectively, and A ,  > 1. 
Introducing (43) into (41) we obtain 

from which A ,  can be computed. Then, comparing (40) with (22) the constants c1 
and c2 can be expressed as 

c [ ( 1  -n) pc,,u212A:]: 
c2 = - 

(l+n) a2k 

The complete procedure is as follows. For given experimental conditions the fluid 
properties (p,p,  k ,  cp)  are known. The shape parameters a, b,  c and the exponent n 
are obtained from (28). The constants A and Bare determined by calibration in steady 
flow. The ratio A ,  is calculated from (44). This allows the computation of the 
constants c1 and c2 from (45) and (46), respectively. Thus, if the variation of 17, and 
E with time are measured, the wall shear stress can be calculated from (40). This 
procedure is to  be regarded as a suggestion at this time. In order to establish its 
reliability, i t  would be necessary to compare i t  with other independent techniques 
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of measuring wall shear stress in unsteady flows, as such techniques become available 
in the future. 

The second and the third terms on the right-hand side of (40) represent the 
corrections to be applied to the conventional relationship, to account for the effect 
of unsteadiness. These corrections become negligible if these terms are small 
compared with the first term on the right-hand side. For a periodic flow oscillating 
sinusoidally a t  a frequency o, this condition leads to 

and 

where [ 3 and I I respectively denote the amplitude of oscillation and order of 
magnitude of the enclosed quantity. 

So far, it  has been assumed that turbulent fluctuations in 7, and QT (and hence 
in E )  are small compared to the ensemble averaged values. Sandborn (1979), however, 
recognized that, when the turbulent fluctuations in 7, are large compared with (T,) ,  

large errors can arise from the use of this linearized relation. In these cases, the full 
nonlinear version (26) must be used; correspondingly, (39) and (40) would have to 
be written in terms of instantaneous values, namely 

7, = A F + B  (49) 

and 
dUe 1 dE2 

+ c , A - .  
dt 

7, = ( A E 2 + B ) 3 + ~ 1  - 
dt AE2+B 

A method for obtaining the calibration constants A and B relating the instantaneous 
values of 7, and E in (49) has been discussed by Ramaprian & Tu (1983). Once A 
and B are known, the instantaneous value of 7, can be obtained from the 
instantaneous value of E using (50). The instantaneous values of E should be obtained 
from a suitable data-acquisition device. The instantaneous values of 7, are then 
ensemble averaged to obtain <T,). 

Finally, i t  is important to  note that the formulation represented by (40) is valid 
even in the presence of a non-negligible spatial-pressure gradient, provided one writes 

in (40). However, extra restrictions may appear in addition to  those for zero time-mean 
pressure-gradient flow, if the second term on the right-hand side of (51) is much larger 
than the first term. These restrictions can be studied using a procedure analogous 
to that presented in the Appendix. 

5. Application to the calculation of the turbulent spectral density 
The present method, developed for the measurement of ensemble-averaged wall 

shear stress in periodic boundary layers, can be also applied to the estimation of the 
response of the hot-film gauge to the turbulent fluctuations of wall shear stress in 
steady flow. Let us rewrite the instantaneous relationship (22) in the following form 
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where bpkATo 
Bl=2a. (53) 

(54) 

We now write rWL = 7, + ArW, 

Q, = Qw+AQw, 

Ue = Ue+AUe,  

where the overbar denotes time-mean quantities, and the symbol A now stands for 
the perturbation from the time-mean value due to a frequency 'f' in the turbulent 
spectrum. For illustration let us once again assume that the turbulent fluctuations 
are small compared to the time-mean quantities, then 7, and Qw 
their fluctuations are related by 

B, dAUe aAQw 
A 7 W  x -[Al 3Q& AQw +E 7 + A 3  3-1. 

satisfy (29), while 

(55) 

For the chosen frequency, we can write 

4 Arw = rwl eiot 

AQw = Qwl eiwt, J 
where w = 2nf. The perturbation AUe of the free-stream velocity can be neglected 
in this case, if the free stream is assumed to be non-turbulent. Introducing (56) into 
(55) we obtain 

(57) 

Equation (57) relates the wall-shear-stress fluctuations to wall-heat-transfer fluctua- 
tions in steady turbulent flow. It can be rewritten, in a more compact form, as 

(58) 

rwl = - [A, 3@$ + iA, w ]  Qwl. 

7 ~ 1  = - 3.41 qk Qw1 A 9 

where (59) 

is the response function. Using the relation (29) between the time-mean quantities, 
(56) can also be written in the form 

7wl=3&wl,.  (60) 
7 w  Qw 

For w+O, A + 1 and the fluctuation in 7, is in phase with the fluctuation in Q,, and 
the relative amplitudes of the two are related by the quasi-steady relation 

At higher frequencies, the two fluctuations are related to each other via the response 
function A which, using (23), (24) and (29), can be rewritten as 

where 

.f A = 1+1-, 
f o  
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Figure 5 shows the modulus and argument of A-l  as a function of f/fo. Note that 
for f = f,,, the amplitude of the heat-transfer fluctuation is only 71 % ofits quasi-steady 
value, and lags the wall shear stress fluctuation by 45'. 

A typical wall-shear-stress energy spectrum, measured by the authors in the 
flat-plate boundary layer in a water tunnel, is shown in figure 6. This spectrum 
corresponds to  the following time-mean conditions : N 90 cm/s, Cf N 0.00329. The 
wall shear stress was measured using a TSI 1237W flush-mounted hot-film probe and 
a DISA 55M01 constant-temperature anemometer. The film was maintained at an 
overheat ratio (To/Te) of 1.1.  The value of A ,  for the probe under these conditions 
was determined to be 1.3 from (U), following the procedure described in $4. The 
spectrum was obtained by using the fast-Fourier-transform (FFT) technique on the 
sampled data. The anemometer output-voltage signal was low-pass filtered at 100 Hz 
and sampled and digitized at the rate of 200 samples per s. A total of 1024 consecutive 
samples we used in the FFT. The results shown in figure 6 were obtained by smoothing 
out an average of 80 spectra. The spectral results obtained from (60) are compared 
with those obtained from the quasi-steady relation (61). Only the spectral range 
(1&100 Hz) of relevance to  the comparison is shown in the figure. Though the energy 
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FIQURE 6. Measured energy spectrum of wall-shear-stress fluctuations in a flat-plate turbulent 
boundary layer: -, conventional (quaai-steady) method (61); ----, present method (60). 

content within this range is relatively small, it  is seen that the present theory allows 
one to recover substantial information on the details of the spectrum that would 
otherwise have been lost. It is necessary to mention here that nonlinear effects due 
to large-amplitude turbulent fluctuations may modify the results of this illustrative 
example. The full nonlinear version of this theory would have to be used in such cases. 
The example selected here, however, is adequate to show that the present theory 
extends the realm of application of the hot-film gauge for wall-shear-stress measure- 
ment in turbulent flows. Unfortunately, direct verification of the accuracy of these 
spectral estimates is not possible till an independent instrumentation of known 
dynamic response is available for wall-shear-stress measurement in turbulent flows. 
Some recent and current developments using laser anemometry for wall-shear-stress 
and near-wall-flow measurements are likely to change this situation in the future. 

Finally, it must be pointed out that, through (37), it has been assumed that the 
output voltage of the anemometer responds instantaneously to the heat-transfer rate 
from the element. The frequency response of present-day hot-film anemometers is 
generally good enough to justify this assumption. In  fact, the present formula (60) 
is likely to break down at lower frequencies than those at  which the electronic 
response becomes an issue. 

6 FLP 161 



156 A.  N .  Menendez and B. R.  Ramprian 

6. Conclusions 
The conventional calibration procedure for the flush-mounted hot film, when used 

as a skin-friction gauge, fails in high-frequency periodic flows. A theory for the use 
of this gauge in unsteady flows has been developed. This theory leads to the general 
formula (22), which replaces the conventional calibration formula (29). The usefulness 
and limitations of the proposed formula for laminar as well as turbulent flows have 
been established by comparing its accuracy against exact numerical solutions of the 
unsteady thermal and hydrodynamic boundary layers over the film. 

Equations (40) and (50) represent the practical versions of the formula suitable for 
use in flow measurements. The present theory has been developed under certain 
restrictive assumptions. The constraints implied by these assumptions are described 
by (A l), (A 9), (A lo), (A 11) and (A 14) of the Appendix. While the wide range of 
examples discussed in the paper shows that these assumptions are generally valid for 
most of the applications of the skin-friction gauge, it is necessary to verify that these 
five conditions are satisfied before applying the theory to any specific problem. 

A procedure for the calibration of the probe for unsteady flow measurements is 
described. 

A simplified linearized version of the formula (22) is presented in (60). This extends 
the use of the skin-friction gauge to the measurement of the energy spectrum of 
wall-shear-stress fluctuations in steady turbulent flows, in which such fluctuations 
are small relative to the mean value. 

While the dynamic effects of heat transfer to the fluid have been fully taken into 
account in the present theory, a limitation of the present theory is that dynamic 
effects on the substrate heat transfer have been ignored, albeit with some justification. 
This aspect needs further theoretical study. It is also very important to conduct 
experiments that can lead to an assessment of the accuracy of the calibration 
procedure recommended in this paper. For example, this procedure can be tested by 
using it for measuring the instantaneous wall shear stress in a laminar periodic 
boundary layer, for which the exact solution can be obtained analytically or 
numerically. Unfortunately, because of experimental limitations, such tests could not 
be conducted by the authors. It is also possible to verify the accuracy of the present 
procedure if alternative independent techniques for measuring wall shear stress in 
unsteady turbulent flows become available in the future. 

This work was supported by the U.S. Army Research Office, through their 
Grant/Contract No. DAAG-29-79-G-0017 and DAAG-29-83-K-0004. 

Appendix. Restrictions of the theory presented 
It is now necessary to establish the restrictive conditions under which the proposed 

formula (22) applies. These restrictions are imposed by some of the assumptions made 
in arriving at  this formula. First, these assumptions are summarized below in the 
order they were introduced : 

(i) The boundary-layer approximation is valid in the region of heat transfer. 
(ii) Turbulent diffusion can be neglected in the thermal boundary layer. 
(iii) The velocity profile within the thermal boundary layer can be approximated 

(iv) The temperature profile is instantaneously self-similar. 
(v) The thermal-boundary-layer thickness ST satisfies (19). 

by (9). 
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(vi) The shape parameters a ,  b, c and exponent n are independent of time. 
(vii) L 4 xo. 
Assumption (i) implies that 

(y Q 1. 

Assumption (ii) is only relevant for turbulent flows and relates to the fact that 
turbulent-energy diffusion has been neglected in (3). The mathematical consequence 
of this assumption is discussed together with the next assumption. 

Assumption (iii) is one of the strongest assumptions. Hence, it has to be analysed 
in detail. The momentum equation for the hydrodynamic boundary layer in laminar 
flow is 

Double integration of (39) in the cross-stream direction, with the inertia terms 
neglected, yields (Q), which is the velocity profile to zeroth order, UC0). The next order 
approximation U(l)  can now be obtained, by adding to U(O) the contribution from 
the inertia terms, as 

where VO) must be obtained from UC0) using (4), and where only the y-dependence 
is specified for economy of notation. Performing the above integration, we get 

Actually, ( A 4 )  is accurate only up to terms of the order y4. The correct higher- 
order approximation would result from applying (A 3) iteratively. However, we do 
not need to go that far. Assuming that the leading-order term of (A 4) is the first 
one, the zero-order solution will be a good representation of the velocity profile if the 
third, fourth and fifth terms on the right-hand side are very small compared with 
the first one. The order of magnitude of these terms in the thermal boundary layer 
is estimated as 

6-2 
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where, in (A 6), it is assumed that the relative amplitude of oscillation of 7, is twice 
the free-stream relative amplitude (a relation that holds, approximately, for quasi- 
steady flow), and Cf refers here to the order of magnitude of the skin-friction 
coefficient. The required conditions for assumption (iii) to be valid are, therefore, 

0s; 3 -e;, V 

In  the case of turbuEent flow, in addition to  inertia, turbulent diffusion will give a 
small contribution to the velocity profile. To account for this effect, the introduction 
of a turbulence closure model is required. For our purpose, i t  is sufficient to consider 
a quasi-steady eddy-viscosity (pt)  model, such as that given by White (1974), namely 

where k N 0.418 and B N 5.5 are the constants associated with the universal 
logarithmic velocity distribution. Double integration of the term a/ay(pt aU(o)/ay) 
leads to the following additional term in (A 4) : 

k4pi 
- (7,)fy4 exp ( -  kB) - 2.3 x lop5 
24p4 7 

where the right-hand side gives the order of magnitude. Comparison with (A 5) leads 
to the condition 

Equation (A 14) is the extra condition that must be satisfied in turbulent flow. It 
can be interpreted as the requirement that  the thermal boundary layer is completely 
submerged in the viscous sublayer. 

Assumption (viii), of course, introduces the restriction wL/U,,  < wxo/U,,. The 
remaining assumptions do not seem to introduce any additional restrictions into the 
problem. I n  fact, exact numerical solutions showed that, in all the cases tested, these 
assumptions were valid. For more details, the reader is referred to Menendez & 
Ramaprian ( 1984 b) . 

It is, however, necessary to  ensure, before using the formula (40) or (50), that the 
conditions of operation of the hot-film gauge satisfy the restrictions implied by (A l) ,  
(A 9)-(A 1 1 )  and (A 14). For this purpose, estimates for the thermal-boundary-layer 
thickness 8, in laminar and turbulent flow are needed. The following are the suggested 
expressions that can be used as estimates (more details can be found in Menendez 
& Ramaprian 1984b): 

where 8, (the hydrodynamic-boundary-layer thickness) and /3 are given by 
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for laminar flow, (see Kays & Crawford 1980) with Pr being the Prandtl number, and 

for turbulent flow (see White 1974). The expression for is recommended by the 
authors in analogy with laminar flow. Present finite-difference calculations indicate 
that the numerical constant is 0.057 for water with a Prandtl number of 7. 
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